


Weight Deflectometer (FWD) data in order to target limited upgrading and maintenance resources.

Civil Engineering Central Services

Civil Engineering Central Services

Forestry Commission Dynamic Cone Penetrometer

Civil Engineering Central Services

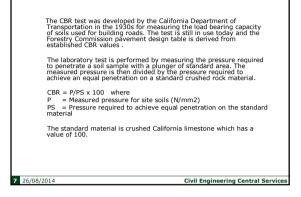
2 26/08/2014

Forestry Commission Concepts

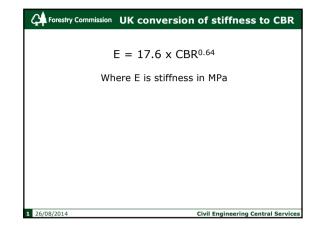
3 26/08/2014

4 26/08/2014

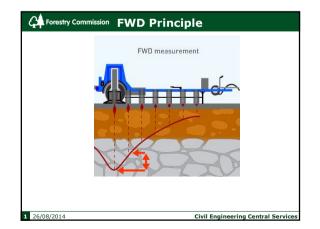
- 1. Determine the existing road structure thickness from GPR interpretation.
- 2. Establish the required road thickness by calculating the bearing capacity (stiffness) of the subgrade.
- Compare actual thickness with required thickness and calculate additional requirements.


Subgrade stiffness can be determined by

- Dynamic Cone Penetrometer (results expressed as California Bearing Ratios) or by
- Falling Weight Deflectometer (results in MPa).


Forestry Commission DCP Design Graph A. DESIGN GRAPH FOR D.C.P. TEST 6 26/08/2014 **Civil Engineering Central Services**

1

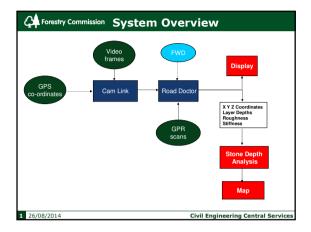

Forestry Commission California Bearing Ratio (CBR)

Soil Type	CBR %	Indicative Total Pavemen Thickness (mm)
Peat, silt	<2	>850 (consider excavation firmer subgrade or use of geosynthetic)
Silty clay	2	700
Heavy clay	3	550
Sandy clay	4	475
Saturated sand	7	325
Fine sand	10	250
Graded sandy gravel	20	150
Rock	250+	Min. 100 to allow grading o surface

 Forestry Commission
 Video

 Video
 Video

 <tr



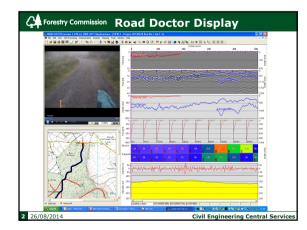
3

Forestry Commission Method

Road Doctor

Establish number of existing construction layers and depths by interpretation of GPR data. Use video record to inform GPR interpretation and visual analysis

Establish bearing capacity of subgrade at 50 metre intervals by calculating stiffness moduli from Falling Weight Deflectometer data.


- Stone Depth Analysis

 Import distance, GPS, layer depth(s) roughness and stiffness data from Road Doctor
 .
- Convert stiffness to California Bearing Ratio (CBR) Establish required structural depths of stone from "look-up" CBR design table, compare required depth with actual depth and calculate additional depth requirements.
- Display results in a table which summarises additional depth requirements at 50 metre intervals . .
- Use GPS coordinates to produce a GIS map showing the sections of road to be strengthened.

2 26/08/2014

Forestry Commission Resource Conservation

2 26,	/08/2014	Civil Engineering Central Servi	ices
	Each tonne of stone used generates 7 kg (source, Bruce Nicoll, FR) CO^2 saving = $3002x3x7$	CO ² 63,042 kg	
	At 3 tonnes /m run stone saving = 3002 x 3	9006 tonnes	
	Cash saving = 3002 x 18	£54,036	
	Budget unit cost of upgrading Stone production, haulage and application	£20.84/m £18.00/m	
	Total length of road to be upgraded Length requiring additional stone Length requiring no additional stone	5623 m 2621 m 3002 m	

Two types

2 26/08/2014

- 1. Falling Weight Deflectometer the stone depth analysis spreadsheet includes a table of additional stone requirements at 50m intervals and a GIS map showing the location of the areas to be strengthened is provided.
- 2. Non-Falling Weight Deflectometer a modified stone depth analysis spreadsheet is supplied into which the Civil Engineer can enter appropriate CBR value(s) derived from experience or DCP testing. Additional stone depth requirements are then calculated at 50m intervals. A GIS map showing the existing depths of stone is provided.

Civil Engineering Central Services

Civil Engineering Central Services